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A Method of Avoiding the Edge Current Divergence

in Perturbation Loss Calculations

LEONARD LEWIN, FELLOW,IEEE

Abstract —From a consideration of the properties near the edge of a fiat

finite-thickness strip and an elliptic cross-section strip, it is shown that the

dh’ergence that arises in the perturbation method near a sharp edge cats be

handled by halting the loss cafctdation at a definite distance just short of

the strip edge. This dktatice can be expressed in terms of the radius of

curvature at the tip for a rounded edge, and in terms of the strip thickness

for a flat edge.

I. INTRODUCTION

A commonly used loss calculation method proceeds by, taking

the tangential, magnetic field, as determined for the lossless case,

calculating first the surface currents on the metal boundaries and

then calculating the loss from these currents on the assumption

that they are not affected substantially in form by the finite metal

conductivity. The method can be applied if the metal thickness is

everywhere sufficiently greater than the skin depth, and can even

be used for itifinitely thin strips or diaphragms when the very

small amount of thickness that would be needed to appreciably

exceed the skin depth would not alter the field substantially from

the theoretical value in the ideal (zero-thickness) case. The one

place where this cannot be done is for the axiaf current along a

strip edge, since the ideaf current density near the edge varies as

r – liz where r is the distance from the edge. For this vafiation,

the n’ceded square of the current density varies as I/r and

produces a logarithm-sic divergence if integrated to the strip edge

at r = O. Since all such strips, in practice, have a certain tMlck-

ness, and often a slightly rounded edge, an examination of the

local fields in such cases may be expected to show how to deal

with the divergence,

One method of avoiding this divergence altogether is to simply

assume a finite thickness and to carry out the usually much more

involved analysis for the thick-strip case, This has been done by

Cockroft [1] for isolated rectangular conductors, arid by Kaden

[2] for a rnicrostrip configuration, The problem with this method

is that it requires a major change in the field calculations just in

order to accommodate a local feature in the immediate ,neighbor-

hood of the edge. Nosich and Shestopalov [3], assuming a rounded

edge of diameter equal to the strip thickness, noted that the

magnetic field from a cylinder of radius w varies as l/kw, so

that the actual field near the edge singularity should not become

greater than this. They therefore stop the integration short by the

requisite amount, of the order of ( kw ) 2, where k = 2 rr/A. Not

only is this truncation limit somewhat indefinite, but it is also

frequency dependent, and assumes that the edge is rounded like a

circular cylinder.

When the analysis for the nonzero thickness case is available,

there is, in fact, no need to utilize the perturbation method at all;

and Wheeler [4], rising a technique based on an “incremental

inductance” concept, showed how the losses could be calculated

more directly. However, since the purpose of this paper is to be

able to use the zero-thickness analysis, and to auoid extending it

to the nonzero tyckness case, it does not seem possible to adapt

Wheeler’s method for this purpose, since the needed normrd

derivative is not available.
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A more precise analysis, combining the technique used by

Cockroft with the truncation method of Nosich and Shestopalov,

enables the calculations with the ideal (zero-thickness) fields to

be used, with only a minor modification to take the edge features

into account. Moreover, since the effect is a very local one, in the

immediate proximity of the edge, a quasi-static examination of a

suitable canonicaf problem should be sufficient to show the

essential features, providing the result can be expressed in terms

of local geometrical parameters only.

II. CONFORMAL TRANSFORMATION

If an infinite strip of suitable cross section is examined as a

quasi-static problem, the stream function u and the potential v

are related to the coordinates x and y by an equation of the

form

X+ Z’’= F(U+W) (1)

where F is an analytic function which can be determined from

the shape of the cross section. If n is a variable along the

direction of the outward normaf and s a variable along the

cross-section surface, then, for a TEM wave, 8V’/ 13n and W/ Js
are, respectively, proportioned to the normal electric field and the

tangential magnetic field at the cross section. The latter, at the

boundary surface, is proportional to the axial current density.

Hence, the loss perturbation calculation involves the integral

/[2 ds a J ( NJ/ds)2 ds = J ( dU/ds) dU taken between appropri-

ate limits. The use to be made of this formula is as follows:

i)

ii)

iii)

iv)

Calculate the exact expression for a finite-thickness strip,

calculate the limiting form of the expression for an in-

finitely thin strip where the integration stops just short of

the edge,

by comparing i) and ii) above, determine how far short of

the edge one should stop the integration in order to equaf

the exact result for the finite-thickness strip, and

put this result in terms of locaf geometric parameters only.

If step iv) can be achieved, what results is a construction for

using the infinitely thin strip analysis to obtain results corre-

sponding to a thin nonzero thickness strip, thus permitting the

perturbation analysis to proceed even in this case.

The method will be illustrated for the cases of a flat edge (thin

rectangular strip) and a rounded edge (thin elliptic strip).

III. FLAT EDGE

Fig. 1 shows a flat edge with the coordinate x varying from O

to some value D large enough that local conditions at x = D do

not affect appreciably the field near x = O. The y coordinate at

the edge varies from O to – L and the conformal transformation

between z = x + Zy and w= U + iV comes from integrating

dz/dw = C( W’ – 1)1/2and determining the constants so that

z = O corresponds to w=l: z = – IL to W= –1. Thus the

rectangular strip itself is the equipotential v = O and the integra-

tion gives

m/L= W’(W” –l)”z- Iog[w+ (w’ -1)”2] . (2)

At v= O on the strip surface, this gives the following:

a) Upper surface, y = 0,0< x < D;

v.x/L = U(U2 –1)1’2 -log[u+(u’-l)’/2],

l< U<UO (3)

where Lb = (~D/L)l/2 + O(D– l/z) for large D.

X= Y=(J o
—-- -—.

w’. I W=uo

‘w-1 W=-uo
-— —--

~=()
*z-L

Fig. 1. Rectangular strip cross section.

b) Vertical su~ace, x =0, – L < y <0:

~y/L = U(1– U2)1/2– COS–l U,

–l<u<l. (4)

c) Lower surface, y = – L,O < x < D:

rrx/L = – U(U2 –1)1’2– log[-u+(u’-l)1/2],

–Uo<u<–l. (5)

The required integrations give the losses PI proportional to

()4~e”D
=filog ~ +O(D-112). (6)

The corresponding equation for an infinitely thin strip to give

x= Dat U= UOis

vx/L = U*. (7)

If we take the lower integration limit to x = d, the corresponding

loss calculation gives

where UO= (~D/L)l/2, U1= (~d/L)l/2. Hence

P“=; log:4 (9)

Comparing this with (6) gives

d = L/(4ne”) = L/290. (lo)

Thus the usual loss calculation can be made and will yield a

result equaf to that for a thin strip if the integration is taken to a

distance from the strip edge of approximately one three-hundredth

of the strip thickness. It may be noted that (10) is “local” in the

sense that the extension D does not enter into the expression.

IV, ROUNDED EDGE

Fig. 2 shows a rounded edge as one apex of an elliptic cross

section of semi-axes a and b. The radius of curvature at this apex

is

R = b2/a. (11)

The coordinates and the potentials are related by

x+iy=Asin(U+iV) (12)

where A is a scale factor. From (12)

x = A sin Ucosh V

y- Aces Usinh V (13)

and the equation of an ellipse at potential VOis

x’ Y*

A 2coshz VO+ A 2sinh’ V.
=1. (14)
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&x
Fig. 2. Elliptic cross-section strip.

Hence

Acosh VO=a Asinh VO=b

giving

tanh VO= b/a, (15)

If the ellipse degenerates into an infinitely thin strip, then b = O
and VO= O. For nonzero thin strips, b/a will be small, as will VO,

and we shall be concerned with very small, but nonzero, values of

v~.

The element ds = [(dx)2 + (dy)2]1/2 = AdU[ cosh2 V. –

sin2 U ]1/2 from (13). Hence the loss associated with the ellipse is

proportional to

4 ./2

J
P3=~2”~dU=~ ~

[ cosh’ VO~sin2 U] 1/2

= ~K(l/cosh~) (16)

where K is the complete elliptic integral of the first kind, For V.

small the modulus is close to unity, and (16) has the expansion

P3=~log(4coth~) +0(~2)=~log(4a/b). (17)

For an infinitely thin strip, VO-+ O, x ~ a sin U and the losses are

given by

p4=4(-d(%)2dx=’r-d*”:’og%(18)
for small d.

Comparing with (17) gives

d= b2/8a = R/8 (19)

where R = b2/a is the radius of curvature at the apex. Again, this

is a “local” result in that it depends only on geometrical parame-

ters close to the edge. Because the width of an ellipse near its

apex is quite ill-defined, it is not possible to relate this result

directly to an equivalent strip thickness.

V. CONCLUSIONS

The method of halting the loss integration a determinate

distance just short of an edge enables loss perturbation calcula-

tions to be made with fields calculated for structures with in-

finitely thin strips or diaphragms. This should simplify such

calculations considerably. The method encompasses a finite strip

thickness with either a flat or rounded edge. In fact, the trans-

formation of Section III would, if pursued to a potentiaf surface

VO# O, be able to handle a variety of combinations of rounding

and thickness.
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A TecWlque for the Design of Microwave Transistor

Oscillators

K. L. KOTZEBUE

Abstract —A technique for the design of microwave transistor oscillators

is presented in which measurements made on an experimentally optimized

amplifier are used to calculate six basis oscillator circuits which yield

maximum power output. The procedure has been experimentally verified

by the construction of a silicon bipolar transistor test oscillator at 1 GHz.

I. INTRODUCTION

A microwave transistor power amplifier is often easier to

optimize expenmen tally than the corresponding microwave tran-

sistor oscillator. A transistor power amplifier is easily optimized

because, at a given frequency and operating point, only two

parameters need be varied: the input RF drive level, and the

output load impedance (assuming that harmonic impedance

terminations are not of first-order importance). Once these

parameters are experimentally optimized, the design is completed

by measuring the input impedance and constructing an input

matching network. In the case of the transistor oscillator, how-

ever, there are a multitude of possible oscillator configurations,

each more difficult to experimentally optimize for maximum

power output than an amplifier. It is more difficult to experime-

ntally optimize an oscillator for maximum power output because

of the relatively li~ge number of interacting circuit elements

which must be van.ed, while maintaining a condition of oscilla-

tion. But since we know that a transistor operates under the same

set of RF voltages and currents when delivering its maximum

added power as an ampfifier as it does when delivering its

maximum output power as an oscillator, it should be possible to

take information obtained from an easily optimized power

amplifier and use this information to calculate optimum oscilla-

tor configurations. In this paper, such a design procedure is

presented.

II. DESIGN PROCEDURE

The first step in the procedure is to experimentally optimize

the large-signal per formance of the transistor by varying the load

impedance and RF drive level until the transistor’s added power

has been maximized. The load may be varied in the conventional

fashion using stub tuners, etc., or the load maybe synthesized by

injecting a second signal into the output port in the manner

reported by Takayama [1]. The incident and reflected waves al,
bl, az, and b2, as shown in Fig. 1, can be measured on a network

analyzer setup, and the added power computed from (1)

where
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