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A Method of Avoiding' the Edge Current Divergence
in Perturbation Loss Calculations

LEONARD LEWIN, FELLOW, IEEE

Abstract —From a consideration of the properties near the edge of a flat
finite-thickness strip and an elliptic cross-section strip, it is shown that the
divergence that arises in the perturbation method near a sharp edge can be
handled by halting the loss calculation at a definite distance just short of
the strip edge. This distance can be expressed in terms of the radius of
curvature at the tip for a rounded edge, and in terms of the strip thickness
for a flat edge.

I. INTRODUCTION

A commonly used loss calculation method proceeds by taking
the tangential magnetic field, as determined for the lossless case,
calculating first the surface currents on the metal boundaries and
then calculating the loss from these currents on the assumption
that they are not affected substantially in form by the finitc metal
conductivity. The method can be applied if the metal thickness is
everywhere sufficiently greater than the skin depth, and can even
be used for infinitely thin strips or diaphragms when the very
small amount of thickness that would be needed to appreciably
exceed the skin depth would not alter the field substantially from
the theoretical value in the ideal (zero-thickness) case. The one
place where this cannot be done is for the axial current along a
strip edge, since the ideal current density near the edge varies as
r~1/2 where r is the distance from the edge. For this variation,
the needed square of the current density varies as 1/r and
produces a logarithmic divergence if integrated to the strip edge
at r=0. Since all such strips, in practice, have a certain thick-
ness, and often a slightly rounded edge, an examination of the
local fields in such cases may be expected to show how to deal
with the divergence.

One method of avoiding this divergence altogether is to simply
assume a finite thickness and to carry out the usually much more
involved analysis for the thick-strip case. This has been donc by
Cockroft [1] for isolated rectangular conductors, and by Kaden
[2] for a microstrip configuration. The problem with this method
is that it requires a major change in the field calculations just in
order to accommodate a local feature in the immediate neighbor-
hood of the edge. Nosich and Shestopalov [3}, assuming a rounded
edge of diameter equal to the strip thickness, noted that the
magnetic field from a cylinder of radius w varies as 1/kw, so
that the actual field near the edge singularity should not become
greater than this. They therefore stop the integration short by the
requisite amount, of the order of (kw)?, where k= 2m/X. Not
only is this truncation limit somewhat indefinite, but it is also
frequency dependent, and assumes that the edge is rounded like a
circular cylinder.

When the analysis for the nonzero thickness case-is available,
there is, in fact, no need to utilize the perturbation method at all;
and Wheeler [4], using a technique based on an “incremental
inductance” concept, showed how the losses could be calculated
more directly. However, since the purpose of this paper is to be
able to use the zero-thickness analysis, and to avoid extending it
to the nonzero thickness case, it does not seem possible to adapt
Wheeler's method for this purpose, since the needed normal
derivative is not available.
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A more precise analysis, combining the technique used by
Cockroft with the truncation method of Nosich and Shestopalov,
enables the calculations with the ideal (zero-thickness) fields to
be used, with only a minor modification to take the edge features
into account. Moreover, since the effect is a very local one, in the
immediate proximity of the edge, a quasi-static examination of a
suitable canonical problem should be sufficient to show the
essential features, providing the result can be expressed in terms
of local geometrical parameters only.

II. CONFORMAL TRANSFORMATION

If an infinite strip of suitable cross section is examined as a
quasi-static problem, the stream function U and the potential ¥
are related to the coordinates x and y by an equation of the
form

x+iy=FU+iV) 4]

where F is an analytic function which can be determined from
the shape of the cross section. If n is a variable along the
direction of the outward normal and s a variable along the
cross-section surface, then, for a TEM wave, dV/dn and U/ ds
are, respectively, proportional to the normal electric field and the
tangential magnetic field at the cross section. The latter, at the
boundary surface, is proportional to the axial current density.
Hence, the loss perturbation calculation involves the integral
[I7ds o« [(BU/ds)* ds = [ (3U/ds) dU taken between appropri-
ate limits. The use to be made of this formula is as follows:

i) Calculate the exact expression for a finite-thickness strip,

ii) calculate the limiting form of the expression for an in-
finitely thin strip where the integration stops just short of
the edge,

iii) by comparing 1) and ii) above, determine how far short of
the edge one should stop the integration in order to equal
the exact result for the finite-thickness strip, and

iv) put this result in terms of local geometric parameters only.

If step iv) can be achieved, what results is a construction for
using the infinitely thin strip analysis to obtain results corre-
sponding to a thin nonzero thickness strip, thus permitting the
perturbation analysis to proceed even in this case.

The method will be illustrated for the cases of a flat edge (thin
rectangular strip) and a rounded edge (thin elliptic strip).

III. Frat EDGE

Fig. 1 shows a flat edge with the coordinate x varying from 0
to some value D large enough that local conditions at x = D do
not affect appreciably the field near x = 0. The y coordinate at
the edge varies from 0 to — L and the conformal transformation
between z=x-+iy and W=U+iV comes from integrating
dz/dw=C(W?—1)/? and determining the constants so that
z=0 corresponds to W =1, z=—1L to W=—1. Thus the
rectangular strip itself is the equipotential =0 and the integra-
tion gives

mz/L=w(w? 1) ~log[ W+ (w2 -1)""]. ()

At V' =0 on the strip surface, this gives the following:
a) Upper surface, y =0,0 < x < D:

wx/L=U(U?=1)" ~log[U+ (U2 -1)""7],
1<U=<Ul, (3)
where Uy = (7D/L)* + O(D~'/?) for large D.

x=y=0 D
wel W=Uo
W= -1 We-Up
x=0
y=-L
Fig. 1. Rectangular strip cross section.

b) Vertical surface, x=0,—- L < y <0:
my/L=U(1-U*)"*~cos1U,
-1<U<1. (4)
¢) Lower surface, y=—L,0<x<D:
mx/L=—-U(U?~1)"~log[ - U+ (U2 -1)"?],
—Uy<U<-1. (5)
The required integrations give the losses P, proportional to

U dU

= [44 4u+ % U v

) dU+f

_ T Uy du 1 du
—2L{2-/; (U2_1)1/2+f_1(1“U2)1/2}
_ o ( 47e™D
37108~
The corresponding equation for an infinitely thin strip to give
x=DatU=Ulis

)+0(D*1/2). (6)

mx/L=U> (7

If we take the lower integration limit to x = d, the corresponding
loss calculation gives

VodU ypy T (UodU _ 7, U
—2] dU~L T AT (8)
where U, = (wD/L)l/2 U= (mi/L)l/2 Hence
D

Comparing this with (6) gives

d=L/(4me”) = L/290. (10)
‘Thus the usual loss calculation can be made and will yield a
result equal to that for a thin strip if the integration is taken to a
distance from the strip edge of approximately one three-hundredth

of the strip thickness. It may be noted that (10) is “local” in the
sense that the extension D does not enter into the expression.

IV. RounpeDp EDGE

Fig. 2 shows a rounded edge as one apex of an elliptic cross
section of semi-axes a and b. The radius of curvature at this apex
is

R=1b%a.
The coordinates and the potentials are related by
x+iy=Asin(U+iV)
where A4 is a scale factor. From (12)
x=AsinUcoshV
y=AcosUsinhV
and the equation of an ellipse at potential ¥ is
x2 2
2 + .
Acosh’V,  A%sink? ¥,

(11)

(12)

(13)

=1. (14)
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Fig. 2. Elliptic cross-section strip.

Hence
AcoshVy=a AsinhV,=15
giving
tanhV,=b/a. (15)

If the ellipse degenerates into an infinitely thin strip, then 5 =0
and ¥, = 0. For nonzero thin strips, b/a will be small, as will ¥,
and we shall be concerned with very small, but nonzero, values of
Vo-

The element ds = [(dx)? + (dy)?]*? = AdU] cosh® ¥, —
sin? U]*? from (13). Hence the loss associated with the ellipse is
proportional to

_ 291_(_1_{]_\ _4 2 du
P3_./0 dst_Aj(‘) 27 il 712
[cosh Vy —sin U]
=3K(1/coshV0) (16)

where K is the complete elliptic integral of the first kind. For ¥
small the modulus is close to unity, and (16) has the expansion

(17)

For an infinitely thin strip, ¥, — 0, x = asinU and the losses are

P, =%10g(4cothV0)+0(V02) zg—log(4a/b).

given by
a- -d dx 2 2a
—4[ ( )d—4f —S_a~gles (8)
for small d.
Comparing with (17) gives
d=b*/8a=R/8 (19)

where R = b?/a is the radius of curvature at the apex. Again, this
is a “local” result in that it depends only on geometrical parame-
ters close to the edge. Because the width of an ellipse near its
apex is quite ill-defined, it is not possible to relate this result
directly to an equivalent strip thickness.

V. CONCLUSIONS

The method of halting the loss integration a determinate
distance just short of an edge enables loss perturbation calcula-
tions to be made with fields calculated for structures with in-
finitely thin strips or diaphragms. This should simplify such
calculations considerably. The method encompasses a finite strip
thickness with either a flat or rounded edge. In fact, the trans-
formation of Section III would, if pursued to a potential surface
Vo # 0, be able to handle a variety of combinations of rounding
and thickness.
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A Technique for the Design of Microwave Transistor
Oscillators

K. L. KOTZEBUE

Abstract — A technique for the design of microwave transistor oscillators
is presented in which measurements made on an experimentally optimized
amplifier are used to calculate six basis oscillator circuits which yield
maximum power output. The procedure has been experimentally verified
by the construction of a silicon bipolar transistor test oscillator at 1 GHz.

1. INTRODUCTION

A microwave transistor power amplifier is often ecasier to
optimize experimentally than the corresponding microwave tran-
sistor oscillator. A transistor power amplifier is easily optimized
because, at a given frequency and operating point, only two
parameters need be varied: the input RF drive level, and the
output load impedance (assuming that harmonic impedance
terminations are not of first-order importance). Once these
parameters are experimentally optimized, the design is completed
by measuring the input impedance and constructing an input
matching network. In the case of the transistor oscillator, how-
ever, there are a multitude of possible oscillator configurations,
each more difficult to experimentally optimize for maximum
power output than an amplifier. It is more difficult to experimen-
tally optimize an oscillator for maximum power output because
of the relatively large number of interacting circuit clements
which must be varied, while maintaining a condition of oscilla-
tion. But since we know that a transistor operates under the same
set of RF voltages and currents when delivering its maximum
added power as an amplifier as it does when delivering its
maximum output power as an oscillator, it should be possible to
take information obtained from an easily optimized power
amplifier and use this information to calculate optimum oscilla-
tor configurations. In this paper, such a design procedure is
presented.

II. DESIGN PROCEDURE

The first step in the procedure is to experimentally optimize
the large-signal performance of the transistor by varying the load
impedance and RF drive level until the transistor’s added power
has been maximized. The load may be varied in the conventional
fashion using stub tuners, etc., or the load may be synthesized by
injecting a second signal into the output port in the manner
reported by Takayama [1]. The incident and reflected waves a;,
by, a,, and b,, as shown in Fig. 1, can be measured on a network
analyzer setup, and the added power computed from (1)

1-1841°
Power=ib2|2{1—%—|%lzll} 1
185,1 1874
where
,_b
Sn=a_1
Lo b
S 2 = az
, _b
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